Операция на позвоночнике электростимулятором

Операция на позвоночнике электростимулятором thumbnail

Дистрофические процессы в позвоночнике, нейродегенеративные заболевания, травмы и миелопатия спинного мозга могут стать не только причинами невыносимой боли. Эти болезни приводят к двигательным нарушениям и даже параличу, становятся источником многих физиологических неудобств. Помочь здесь ощутимо не в силах даже самый талантливый невропатолог или вертебролог.

Реальной помощью для таких больных может стать электростимуляция спинного мозга — лечение импульсами от SCS-электрода, имплантируемого в эпидуральное пространство спинного мозга.

Когда применяется электромиостимуляция спинного мозга

Электромиостимуляция приходит на помощь при хроническом болевом синдроме, ведь стероидные инъекции нельзя применять долго, так как вред от них может быть немалый:

  • нарушение деятельности ЖКТ;
  • развитие костной резорбции;
  • эндокринные нарушения и др.

В 70% случаев электростимуляция помогала отказаться от обезболивающих препаратов.

Показаниями для электростимуляции являются:

  • посттравматическая дистрофия;
  • периферическое поражение нервов;
  • спинальный арахноидит;
  • ишемический паралич;
  • церебральный паралич, в том числе и ДЦП (детский церебральный паралич);
  • пара- и тетрапарезы при дорзальных грыжах межпозвоночного диска;
  • соматические расстройства неврологической природы;
  • фантомные боли;
  • хронический корешковый синдром и др.

Как проходит электростимуляция спинного мозга

Операция производится в два этапа.

Пробная электростимуляция

  • На первом этапе методом эпидуроскопии под местной анестезией в эпидуральное пространство спинного мозга вводятся электроды.
  • Визуальное наблюдение при помощи видеокамеры эндоскопа позволяет расположить их максимально точно.
  • Проводится пробное испытание: в течение определенного времени анализируется болевая динамика — есть или нет снижения боли под влиянием импульсов.
  • Опытным путем определяют самые оптимальные параметры излучения.

Постоянная электростимуляция

После успешных пробных испытаний электроды-стимуляторы оставляют в эпидуральном канале — производится окончательная имплантация.

Пациента подробно инструктируют, как пользоваться элетростимуляторной системой и менять при надобности параметры.

Противопоказания при электромиостимуляции

Осложнения при этой процедуре, если система введена правильно, относительно редки, но все же у пациента после введения эндоскопа могут возникнуть не очень приятные ощущения:

  • чувство давления в месте расположения эндоскопа;
  • боль, парестезия;
  • помутнение сознания на две-три минуты.

Характер возможных осложнений:

  • повреждение твердой мозговой оболочки, нервных корешков;
  • инфекционно-воспалительные процессы и кровотечение.

Возможна также аллергия на лекарственные препараты с побочными эффектами:

  • реактивный спаечный процесс;
  • онемение конечностей;
  • дисфункции тазовых органов.

Случаи из клинической практики

Эффективность электростимуляции доказана совместными исследованиями российских и американских ученых.

В 2014 г. они исследовали эффект электростимуляции на четырех мужчинах, попавших в страшную аварию, которая привела к потере чувствительности и нарушениям двигательных функций ног.

В пояснично-крестцовую область эпидурального пространства спинного мозга, в участок, содержащий крупные венозные сплетения им имплантировали электроды, имитирующие сигналы, поступающие от головного мозга двигательным нейронам.

У больных вскоре произошла весьма положительная динамика:

  • восстановились двигательные функции ног;
  • наладилась работа кишечника и мочеполовой системы;
  • окрепла мышечная система;
  • улучшилось самочувствие.

Электростимуляция в лечении детского церебрального паралича

Электромиостимуляция при ДЦП эффективна при спастическом парапарезе нижних конечностей, при этом эндоскоп вводится в поясничное утолщение.

Постоянная электростимуляция при ДЦП часто практикуется заграницей у больных:

  • со спинальным спастическим параличом;
  • с рассеянным склерозом;
  • с тяжелыми посттравматическими последствиями.

В результате исследований наших ученых было выяснено:

  • Применение электростимуляции поясничного отдела у больных ДЦП уменьшало спазмы в мышцах не только нижних, но и верхних конечностей.
  • В результате наступившей нормализации мышечного тонуса SCS-стимуляцию можно было прекращать по истечению одного-двух лет после операции.

Детский церебральный паралич лечится очень долго и сложно. При лечении, кроме электростимуляции, применяются нервно-мышечные блокады, нейрохирургические операции, методы физиотерапии.

Но об этом — в отдельной статье.

Видео: Как отличить парез от паралича

Оценка статьи:

(96 оценок, среднее: 4,90 из 5)

Загрузка…

Источник

Хроническая боль – это серьезная проблема населения во всем мире. Речь идет об одном из ведущих заболеваний, приводящих к инвалидности, происходящем в сопровождении социальных и психологических факторов. При лечении хронической боли применяется многодисциплинарный подход, в котором используется широкий спектр антитромбоцитарных процедур – фармакологических, хирургических, психологических, физиологических (например, экзоскелет).

Цель лечения заключается в облегчении хронической боли, повышении функциональности, работоспособности, соответственно, улучшении качества жизни. При лечении болезненности (когда стандартная терапия не увенчалась успехом или сопровождается серьезными побочными эффектами) успешно осуществляются нейромодуляционные методы. Один из них – SCS (Spinal Cord Stimulation, нейростимуляция спинного мозга). Большое преимущество этого метода – эффективность. Применение нейростимуляторов позволяет значительно уменьшить прием обезболивающих препаратов, включая опиаты и другие вспомогательные средства, следовательно, минимизировать их побочные эффекты.

Столб

Механизмы действия

Первая система электрической стимуляции спинного мозга была разработана в 1960-х годах, вскоре после открытия теории о механизме боли. Исследователи использовали основное теоретическое предположение, что раздражение миелиновых волокон может предотвратить передачу болезненных стимулов, вызванных немиелинированными волокнами. Проведение первой электронейростимуляции произошло в 1967 году под названием «стимуляция спинных столбцов» (Dorsal Column Stimulation – DSC). Позднее название было изменено на стимуляцию спинного мозга (SCS), поскольку было показано, что эффект не ограничивается задним спинным мозгом, но подавление боли может быть достигнуто путем стимуляции других структур.

Анальгетические и сосудорасширяющие эффекты электростимуляции спинного мозга нельзя объяснить только путем ингибирования передачи боли малыми волокнами. Другие возможные механизмы включают:

  • активацию нисходящих тормозных путей;
  • модуляцию боли в супраспинальных центрах;
  • ингибирование активности спиноталамических путей;
  • выделение вазоактивных веществ.

Все эти и ряд других потенциальных механизмов, возможности их использования являются предметом интенсивных исследований, которые проводятся во всем мире. В отношении эпидуральной стимуляции можно сказать, что клиническая практика обошла теорию.

Позвоночник

Согласно глобальной статистике, ежегодно имплантируется более 15000 нейромодуляционных систем. Кроме SCS принцип нейростимуляции применяется в многих медицинских дисциплинах. Сегодня проводится воздействие на головной мозг, глубокая стимуляция (Deep Brain Stimulation – DBS) при лечении болезни Паркинсона, стимуляции моторной коры в целях оказания влияния на нейропатические боли, затрагивающие верхнюю часть тела (особенно таламической и другой невралгической боли).

Другие методики включают стимуляцию:

  • сакрального нерва (Sacral Nerve Stimulation – SNS) при нарушениях опорожнения мочевого пузыря и кишечника;
  • блуждающего нерва (Vagus Nerve Stimulation – VNS) при лечении пациентов с резистентной эпилепсией, депрессией, мигренью;
  • периферического нерва (Peripheral Nerve Stimulation – PNS) для облегчения невропатической боли, вызванной нарушением периферических нервов.

Одна из форм стимуляции – транскраниальная магнитная стимуляция (Transcranial magnetic stimulation – TMS), основанная на воздействии магнитного поля. Методика применяется для нервов, спинного, головного мозга. Магнитный поток имитирует естественные, натуральные импульсы в нервной системе, вызывающие мышечное сокращение.

Техническое описание SCS

Чрескожно вводимая система SCS состоит из 1-2 электродов и имплантируемого генератора импульсов (IPG – Implantable Pulse Generator). Электрод располагается в эпидуральном пространстве спинного канала, соединяется с генератором, расположенным в небольшом подкожном кармане, обычно в ипохондрии.

Спина

IPG состоит из чипа и литиевой батареи, срок службы которых составляет 3-7 лет в зависимости от частоты и продолжительности стимуляции. Генератор излучает ток – слабые электрические импульсы с напряжением 0,1-10 В, шириной 60-450 мкс и частотой 2-150 Гц, что приводит к уменьшению восприятия болевых сигналов (эффект сохраняется в течение некоторого времени после отключения нейростимулятора). Эти электрические импульсы пациент ощущает, как достаточно приятное покалывание в болезненной области.

Имплантация SCS

Фактическая имплантация системы нейростимуляции состоит из 2-х этапов.

На первом этапе с помощью иглы Туохи через небольшой разрез электрод под рентгенологическим контролем помещается в эпидуральное пространство спинного канала. Вхождение в эпидуральное пространство и место стимуляции должны находиться на расстоянии примерно 2-3 позвонков друг от друга. Эта фаза проводится под местной анестезией и аналгоседацией, т.к. требует сотрудничества пациента. Конечное расположение электрода зависит от локализации боли и парестезии, указанной больным:

  • для контроля болезненности в верхних конечностях проксимальный конец электрода располагается в области C3-C7;
  • для контроля боли нижних конечностей – в области Th11-Th12;
  • при постдискотомическом синдроме, боли в спине – Th8-Th10;
  • при стенокардической боли – в области C8.

При односторонней боли электрод помещается на болезненную сторону, при двусторонней боли – располагается в средней линии или имплантируется 2 электрода. После размещения электрода в эпидуральном пространстве его дистальный конец соединяется с внешним источником стимуляции. После начала стимуляции пациент испытывает параэстезию в определенной области, а электрод сдвигается до тех пор, пока парестезии покрывают всю область сознательной боли.

За этим следует несколько дней пробного периода, когда пациент и врач посредством внешнего генератора удостоверяются в эффективности действия нейростимулятора. Если стимуляция успешна, т.е. обеспечивает уменьшение болезненности, как минимум, на 50%, следует 2-я фаза имплантации.

Устройства

В ходе 2-го этапа при общей анестезии электрод интернализуется, а генератор импульсов (IPG) внедряется в небольшой подкожный карман. Параметры стимуляции телеметрически с помощью медицинского программатора передаются через кожу; они могут в любое время изменяться, адаптироваться к потребностям пациента. Больной получает маленький ручной программатор, которым включает и выключает устройство, изменяет интенсивность и частоту электрических импульсов в пределах диапазона, установленного врачом.

Электрод фиксируется в спинномозговом канале путем образования спаек в течение 4-6 недель. На протяжении этого периода человек ограничен в определенных ежедневных действиях (ношение груза весом более 2 кг, поднятие рук над головой, наклоны, вращение туловища). Пациент не реже 1 раза в 6 месяцев осматривается врачом; также проводится проверка правильности работы устройства.

Критерии для имплантации SCS

Как упоминалось ранее, показания для введения нейростимулятора включают хроническую боль, особенно не раковой этиологии, при которой стандартная терапия не показала эффективности.

Общие критерии для применения методов нейростимуляции:

  • Исчерпанная или неэффективная стандартная терапия (фармакологическая, включая опиаты, менее инвазивные методы, физиотерапия), сильные побочные эффекты лечения.
  • Отсутствует каузальное решение болезненного состояния хирургическими методами.
  • Пациент тщательно обследован психологом и психиатром, не обнаружено серьезных психических или психиатрических заболеваний. Пациенты с анальгетической или другой зависимостью должны быть лишены зависимости.
  • Больной достаточно осведомлен о методе, способен понять его механизм, придерживаться определенных ограничений, связанных со стимуляцией спинного мозга.
  • Важнейший критерий – успешный период тестирования (обычно занимает 5-15 дней). Успех определяется снижением боли минимум вдвое, удовлетворенностью человека нейростимуляцией.
  • Обеспечены условия для качественной имплантации нейростимуляционной системы и последующего ухода.

Показания для применения SCS

Эпидуральная электростимуляция спинного мозга влияет на ряд болезненных синдромов. В особенности, делать ее рекомендуется при хронической доброкачественной боли нейропатической этиологии (возникает в результате повреждения периферических нервов или корней). Полезна процедура при смешанной боли, содержащей нейропатический и ноцицепторный компонент.

Приборы

Проводить SCS рекомендуется при следующих состояниях:

  • синдром постдизотомии, в клинике которого преобладает болезненность в нижних конечностях;
  • спастика;
  • фантомная боль;
  • ДЦП;
  • комплексный региональный болевой синдром (ранее называвшийся альдодистрофическим синдромом) II типа; меньше подходит I тип;
  • болезненный синдром после повреждения периферических нервов, сплетений;
  • постгерпетическая невралгия;
  • полинейропатия;
  • стенокардия без возможности медикаментозного или оперативного лечения;
  • ишемическая болезнь нижних конечностей III-IV степени по Фонтейну.

Противопоказания к реализации SCS

Применение нейростимуляции противопоказано в следующих случаях:

  • технические проблемы с вводом электрода в эпидуральное пространство при тяжелых дегенеративных заболеваниях позвоночника, посттравматических или послеоперационных состояниях;
  • местные и общие инфекции;
  • нарушения гемокоагуляции;
  • тяжелые иммунные нарушения;
  • существующая имплантация другой системы стимуляции, например, кардиостимулятора;
  • недостаточно сохраненные связки спинного мозга.

Осложнения

Послеоперационные осложнения обычно не наблюдаются. Наиболее распространенное нарушение – дислокация электрода, требующая хирургического лечения. Побочные эффекты электронейростимуляции отсутствуют, но могут проявляться сильные парестезии, которые легко устраняются путем корректировки параметров стимула.

Меры предосторожности

Во время использования системы SCS необходимо соблюдать меры предосторожности. Поскольку на внутреннюю энергетическую систему может влиять магнитное поле, пациентам с имплантатами следует избегать устройств контроля и безопасности (детекторные системы в аэропортах, противоугонные устройства и др.). Если на расстоянии около полуметра от подобных систем изменения отсутствуют, человек должен как можно быстрее пройти через это устройство. Если возникает изменение в стимуляции, отключается нейростимулятор или исключается прохождение детектора (по договоренности со службой безопасности).

Для обеспечения безопасности вождения автомобиля или эксплуатации механизмов нейростимулятор необходимо отключить, поскольку изменения в стимуляции могут привести к потере контроля над транспортным средством или механизмом.

Пациенты с имплантированной системой SCS должны избегать следующих исследовательских или терапевтических процедур:

  • МРТ – может нарушить работу компонентов системы, привести к ее нагреву, вызвать неприятные осознанные парестезии;
  • электрокаутеризация вблизи стимулятора спинного мозга;
  • рентген;
  • ультразвук;
  • дефибрилляторы и кардиостимуляторы.

При соответствующих мерах предосторожности большинство медицинских осмотров не влияют на функцию системы SCS. Однако всегда необходимо информировать медицинский персонал об имплантате.

В заключение

Методы нейромодуляции успешно используются во всем мире с 1970-х лет XX века. Система перенесла множество технических усовершенствований, улучшение используемых материалов, постепенное их уменьшение. Хотя речь идет об относительно дорогостоящих методах, согласно зарубежным данным, чрескожная стимуляция спинного мозга является экономически эффективной благодаря длительному периоду использования (сокращение использования лекарств, повторной визуализации, других обследований, экспертиз, проводимых различными медицинскими специалистами).

Нынешнее развитие биомедицины и микротехнологий расширяет использование методов нейромодуляции. Многие мировые лаборатории и научно-исследовательские институты проводят исследования, изучающие применение нейростимуляции для замены потерянных функций. Следует ожидать, что технические разработки в будущем принесут новые возможности для дальнейшего успешного развития стимуляции позвоночника.

Источник

«Это потрясающее чувство. Я вновь могу согнуть колени, самостоятельно поднять ноги и даже пошевелить пальцами», — рассказывает один из участников экспериментального лечения, которому удалось вернуть свои двигательные способности за счет технологии спинномозговой стимуляции. После травмы позвоночника, полученной 2010 году, его ноги были парализованы.

Фактически сразу несколько исследовательских групп как в России, так и за рубежом трудятся над различными способами лечения паралича, вызванного инсультом или травмой спинного мозга. Благодаря инновационным протоколам лечения пациенты с хронической параплегией заново учатся ходить.

Подобные технологии позволяют стимулировать спинной мозг сверхточными электрическими импульсами, активировать нейромышечные связи ниже травмы и одновременно с этим усиливать остаточные команды от мозга.

Какие механизмы реабилитации уже существуют и могут быть использованы для лечения?

Травма спинного мозга приводит к серьезным нарушениям двигательной активности, значительно снижает качество жизни и влечет за собой значительные расходы для семей и общества. Чтобы преодолеть последствия подобных недугов, ученые стараются восстановить у парализованных людей именно способность ходить.

По мнению нейрофизиологов решающее значение для реабилитации двигательных функций имеет временное совпадение между внешней электостимуляцией и остаточной командой мозга. Так, чтобы добиться идеальной синхронизации, швейцарские ученые из Федеральной политехнической школы Лозанны (EPFL) связали расшифровку двигательного намерения мозга с подачей электросигналов для стимуляции спинного мозга через имплант.

В России подобными исследованиями занимается команда Юрия Герасименко, который много лет возглавляет Институт физиологии им. И.П. Павлова в Санкт-Петербурге. Совместно с российскими и американскими коллегами ему удалось сломать главный стереотип о параличе нижних конечностей.

Ещё лет двадцать назад считалось, что повреждения позвоночника носят анатомический характер, а движениями ног напрямую управляет головной мозг. Ученые расценивали позвоночник исключительно как проводником между мозгом и нижними конечностями и если под воздействием травмы эта связь нарушалась, то человек был вынужден навсегда пересесть в инвалидное кресло.

Но это оказалось заблуждением.

В Институте физиологии после долгих лет упорной работы сумели доказать, что учёные прошлых лет недооценивали значимость спинного мозга, и за движения нижних конечностей человека, в частности, способность ходить, отвечает именно спинной мозг.

Спинной мозг – орган центральной нервной системы, нервная трубка, находящаяся в позвоночном канале. Она делится на 31 сегмент, каждый из которых управляет своей частью тела и собирает информацию – болевую, кожную и мышечную.

Спинной мозг обладает всеми механизмами для инициации и регуляции движений. А это значит, что «починить» человека при параличе можно воздействуя именно на этот орган. Задачей ученых, работающих в Институте физиологии, было научиться управлять шагами, стимулируя спинной мозг. Нейрофизиологи проводили тестирование различных участков спинного мозга у животных в продольном и горизонтальном направлении, пока, наконец, не нашли зону, стимуляция которой вызывала шагательные движения.

«У человека, как у любого млекопитающего в спинном мозгу существуют участки, ответственные за ходьбу. В Хьюстоне поставили задачу – применить к пациентам с травмой спинного мозга стимуляцию, чтобы инициировать шагательные движения. И мы описали у всех пациентов зону, стимуляция которой вызывает необходимую реакцию», – рассказывает Юрий Герасименко.

В ходе дальнейшей работы учёным удалось доказать, что поражение спинного мозга, возникающее при травме позвоночника, носит не анатомический характер, а функциональный. Следовательно, воздействуя на определенные центры, можно восстановить функцию, нарушенную травмой.

Команда Юрия Герасименко разработала такую методику воздействия на спинной мозга, в ходе которой на оболочку нервной трубки устанавливаются электроды, а под брюшину имплантируется стимулятор. Вследствие электростимуляции нервные клетки, взаимодействуя с проводящим имплантом, создают связанные цепочки в обход повреждённого участка и организм «ремонтирует» систему связи между головным и спинным мозгом.

По итогам такого лечения пациент восстанавливается от полного паралича до возможности самостоятельно ходить своими ногами. Стимулятор подает электрические импульсы, которые запускают парализованные ноги и одновременно с этим сигналы «эхом» уходят в головной мозг. И понемногу, шаг за шагом, человек заново учится управлять телом.

«Я даже сидеть стал намного лучше, потому что окреп позвоночник. Я стреляю из лука, хожу по беговой дорожке. Да, мне пока нужны ходунки, и за мной присматривает тренер, но я уверен, что скоро не буду нуждаться в помощи. Это главное для меня», – рассказал один из пациентов доктора Герасименко.

В тоже время, европейские ученые смогли далеко продвинуться в вопросе эффективности и скорости лечения. Если раньше пациенты демонстрировали прогресс только спустя несколько месяцев интенсивной реабилитации, чаще всего — примерно через год. То исследование, выполненное в Швейцарии, показало, как пациенты смогли вновь ходить (с небольшой помощью) спустя всего несколько дней. А после нескольких месяцев тренировок контролировать ранее парализованные мышцы ног даже при отсутствии электростимуляции.

Разница подходов заключалась в том, насколько постоянным был внешний источник тока. Для эпидуральной электростимуляции, как в других исследованиях, пациенту было имплантировано устройство, которое доставляет электрические сигналы в позвоночный столб ниже области повреждений. Когда травма нарушает связь между спинным и головным мозгом, не давая нервным сигналам достигать конечностей, электростимулятор выступает в роли «моста», перенося электрические сигналы в области позвоночника под местом травмы.

Чтобы понять, как нервная система подает электрические сигналы, чтобы обеспечить каждое движение конечностей, исследователи создали «карту» того, как выглядят типичные импульсы мозга, направленные на активацию движений. Затем они определили, в какую область позвоночника электроды должны доставлять стимулирующие сигналы, чтобы соответствовать обнаруженным паттернам и построили систему, которая передавала сигналы ровно туда, куда нужно.

Ученым пришлось подбирать отдельные параметры системы под каждого пациента. Они даже создали персонализированные модели позвоночников, находящиеся в солевом растворе, проводящем электрический ток, что позволило команде в точности определить, куда поместить электроды при последующей операции. Затем паттерны электрических сигналов были откалиброваны под каждого пациента.

«Все подопытные смогли ходить с использованием ассистивных устройств спустя неделю», — подтвердила одна из руководителей группы ученых Джоселин Блотч. В последующих тестах пациенты оказались способны произвольно выбирать длину и скорость своих шагов и в течении часа идти по беговой дорожке, проходя дистанцию порядка одного километра. Все движения самостоятельно выбирались человеком, а эпидуральный имплант при этом не генерировал никаких непроизвольных движений.

«Наши пациенты должны были постоянно думать о совершении подходящих движений ног. Их мозг оставался активным все время, чтобы отрабатывать сигналы цепи обратной связи с электростимуляцией, которая активировала мышцы», — сказала Карен Минассиан, одна из авторов работы. Из-за постоянной вовлеченности, лечение привело к тому, что произвольные движения со временем восстанавливались по мере того, как вновь появлялись соединения в нервной системе.

Успешность лечения зависит от ряда факторов, включая тяжесть травмы и уровень оставшихся двигательных функций. Для некоторых, оно может привести к масштабным улучшениям за короткое время. По мнению ученых, проверка методики на большем числе подопытных станет важным следующим шагом. Ученые планируют изучить результаты методики на людях, получивших свои травмы недавно, когда «потенциал пластичности находится на максимальном уровне, а нейромышечная система еще не испытала эффекта атрофии вследствие хронического паралича».

Ученые отмечают, что данная техника пока еще не готова для применения в клинических условиях. Необходимо тщательно проверить все аспекты подобного лечения, в том числе его эффект на повседневную жизнь пациента за пределами госпиталя. Исследователи разработали активируемую голосом систему, которая позволяет пациенту включать и выключать эпидуральную электростимуляцию по желанию, а также выбирать один из нескольких режимов стимуляции: ходьба, езда на трицикле и т.д. Заставить имплант работать — это важная задача, но также необходимо сделать его доступной использования пациентом в повседневных условиях.

Уже сейчас российские учёные создали следующее поколение подобного устройства – беспроводной стимулятор. Эти открытия и разработки лягут в основу новых интернациональных проектов, которые построят будущее медицинской реабилитации. Будущее, в котором людям не понадобятся инвалидные коляски.

Источник