Высота дисков позвоночника норма
Межпозвонковые диски являются основным элементом, связывающим позвоночный столб в единое целое, и составляют 1/3 его высоты. Основной функцией межпозвонковых дисков является механическая (опорная и амортизирующая). Они обеспечивают гибкость позвоночного столба при различных движениях (наклоны, вращения). В поясничном отделе позвоночника диаметр дисков в среднем составляет 4 см, а высота – 7–10 мм. Межпозвонковый диск имеет сложное строение. В центральной его части находится пульпозное ядро, которое окружено хрящевым (фиброзным) кольцом. Выше и ниже пульпозного ядра располагаются замыкательные (концевые) пластинки.
Пульпозное ядро содержит хорошо гидратированные коллагеновые (расположены беспорядочно) и эластические (расположены радиально) волокна. На границе между пульпозным ядром и фиброзным кольцом (которое четко определяется до 10 лет жизни) с достаточно низкой плотностью расположены клетки, напоминающие хондроциты.
Фиброзное кольцо состоит из 20–25 колец или пластин, между которыми расположены волокна коллагена, которые направлены параллельно пластинкам и под углом 60° к вертикальной оси. Радиально по отношению к кольцам расположены эластические волокна, которые восстанавливают форму диска после совершившегося движения. Клетки фиброзного кольца, расположенные ближе к центру, имеют овальную форму, тогда как на его периферии они удлиняются и располагаются параллельно коллагеновым волокнам, напоминая фибробласты. В отличие от суставного хряща, клетки диска (как пульпозного ядра, так и фиброзного кольца), имеют длинные, тонкие цитоплазматические выросты, которые достигают 30 мкм и больше. Функция этих выростов остается неизвестной, однако предполагают, что они способны к восприятию механического напряжения в тканях.
Замыкательные (концевые) пластинки представляют собой тонкий (меньше 1 мм) слой гиалинового хряща, расположенного между телом позвонка и межпозвонковым диском. Содержащиеся в нем коллагеновые волокна расположены горизонтально.
Межпозвонковый диск здорового человека содержит кровеносные сосуды и нервы лишь во внешних пластинках фиброзного кольца. Замыкательная пластинка, как и любой гиалиновый хрящ, не имеет сосудов и нервов. В основном нервы идут в сопровождении сосудов, однако могут идти и независимо от них (ветви синувертебрального нерва, передней и серой коммуникантных ветвей). Синувертебральный нерв представляет собой возвратную менингиальную ветвь спинального нерва. Этот нерв выходит из спинального ганглия и проникает в межпозвонковое отверстие, где делится на восходящую и нисходящую ветви.
Как было показано на животных, чувствительные волокна синувертебрального нерва образованы волокнами как переднего, так и заднего корешков. Необходимо отметить, что передняя продольная связка иннервируется ветвями спинального ганглия. Задняя продольная связка ноцицептивную иннервацию получает от восходящих ветвей синувертебрального нерва, который также иннервирует наружные пластинки фиброзного кольца.
С возрастом происходит постепенное стирание границы между фиброзным кольцом и пульпозным ядром, которое становится все более и более фиброзированным. Со временем диск морфологически становится менее структурированным – изменяются кольцевые пластинки фиброзного кольца (сливаются, раздваиваются), коллагеновые и эластические волокна располагаются все более хаотично. Часто образуются трещины, особенно в пульпозном ядре. Процессы дегенерации наблюдаются и в кровеносных сосудах и нервах диска. Происходит фрагментарная клеточная пролиферация (особенно в пульпозном ядре). Со временем наблюдается гибель клеток межпозвонкового диска. Так, у взрослого человека количество клеточных элементов уменьшается почти в 2 раза. Нужно отметить, что дегенеративные изменения межпозвонкового диска (гибель клеток, фрагментарная клеточная пролиферация, фрагментирование пульпозного ядра, изменения фиброзного кольца), выраженность которых определяется возрастом человека, достаточно сложно дифференцировать с теми изменениями, которые бы трактовались как «патологические».
Механические свойства (и соответственно функция) межпозвонкового диска обеспечиваются межклеточной матрицей, основными компонентами которой являются коллаген и аггрекан (протеогликан). Коллагеновая сеть образована коллагеновыми волокнами I и II типа, которые составляют примерно 70% и 20% сухого веса всего диска соответственно. Коллагеновые волокна обеспечивают прочность диска и фиксируют его к телам позвонков. Аггрекан (основной протеогликан диска), состоящий из хондроитина и кератансульфата, обеспечивает диск гидратацией. Так, вес протеогликанов и воды в фиброзном кольце составляет 5 и 70%, а в пульпозном ядре – 15 и 80% соответственно. В межклеточной матрице постоянно происходят синтетические и литические (протеиназы) процессы. Тем не менее, она является структурой гистологически постоянной, что обеспечивает механическую прочность межпозвонкового диска. Несмотря на морфологическую схожесть с суставным хрящом, межпозвонковый диск имеет ряд отличий. Так, в протеингликанах (аггрекан) диска отмечается более высокое содержание кератансульфата. Кроме того, у одного и того же человека аггреканы диска имеют меньшие размеры и более выраженные дегенеративные изменения, чем аггреканы суставного хряща.
Рассмотрим более подробно строение пульпозного ядра и фиброзного кольца — основных составляюз межпозвонкового диска.
Пульпозное ядро. По данным морфологического и биохимического анализа, включая микроскопические и ультрамикроскопические исследования, пульпозное ядро межпозвонковых дисков человека относится к разновидности хрящевой ткани (В.Т. Подорожная, 1988; М.Н. Павлова, Г.А. Семенова, 1989; А.М. Зайдман, 1990). Характеристики основного вещества пульпозного ядра соответствуют физическим константам геля, содержащего 83-85% воды. Исследованиями ряда ученых было определено снижение содержания водной фракции геля с возрастом. Так, у новорожденных в пульпозном ядре содержится до 90% воды, у ребенка 11 лет — 86%,у взрослого — 80%, у людей старше 70 лет — 60% воды (W. Wasilev, W. Kuhnel, 1992; R. Putz, 1993). В состав геля входят протеогликаны, которые, наряду с водой и коллагеном, являются немногочисленными компонентами пульпозного ядра. Гликозаминогликанамив составе протеогликановых комплексов являются хондроитинсульфаты и, в меньшем количестве, кератансульфат. Функцией хондроитинсульфатсодержащего региона протеогликановой макромолекулы является создание давления, связанного с пространственной структурой макромолекулы. Высокое имбибиционное давление в межпозвонковом диске удерживает большое количество молекул воды. Гидрофильность протеогликановых молекул обеспечивает их пространственное разделение и разобщенность коллагеновых фибрилл. Сопротивление пульпозного ядра компрессии определяется гидрофильными свойствами протеогликанов и прямо пропорционально количеству связанной воды. Силы компрессии, воздействуя на пульпозное вещество, повышают в нем внутреннее давление. Вода, будучи несжимаемой, оказывает сопротивление компрессии. Кератансульфатный регион способен взаимодействовать с коллагеновыми фибриллами и их гликопротеиновыми чехлами с формированием поперечных связей. Это усиливает пространственную стабилизацию протеогликанов и обеспечивает распределение в ткани отрицательно заряженных концевых групп гликозаминогликанов, что необходимо для транспорта метаболитов в пульпозное ядро. Пульпозное ядро, окруженное фиброзным кольцом, занимает до 40% площади межпозвонковых дисков. Именно на него распределяется большая часть преобразованных в пульпозном ядре усилий.
Фиброзное кольцо образовано фиброзными пластинками, которые расположены концентрически вокруг пульпозного ядра и разделены тонким слоем матрикса или прослойками рыхлой соединительной ткани. Число пластинок варьирует от 10 до 24 (W.С. Horton, 1958). В передней части фиброзного кольца количество пластинок достигает 22-24, а в задней уменьшается до 8-10 (А.А. Бурухин, 1983; К.L. Markolf, 1974). Пластинки передних отделов фиброзного кольца расположены почти вертикально, а задние имеют вид дуги, выпуклость которой направлена кзади. Толщина передних пластинок достигает 600 мкм, задних — 40 мкм (Н.Н. Сак, 1991). Пластинки состоят из пучков плотно упакованных коллагеновых волокон разной толщины от 70 нм и более (Т.И. Погожева, 1985). Их расположение упорядочено и строго ориентировано. Пучки коллагеновых волокон впластинках ориентированы относительно продольной оси позвоночника биаксиально под углом 120° (A. Peacock, 1952). Коллагеновые волокна наружных пластинок фиброзного кольца вплетаются в глубокие волокна наружной продольной связки позвоночника. Волокна наружных пластинок фиброзного кольца крепятся к телам смежных позвонков в области краевой каемки — лимбуса, а также внедряются в костную ткань в виде Шарпеевских волокон и плотно срастаются с костью. Фибриллы внутренних пластинок фиброзного кольца вплетаются в волокна гиалинового хряща, отделяя ткань межпозвонкового диска от спонгиозной кости тел позвонков. Так формируется «закрытая упаковка», которая замыкает пульпозное ядро в непрерывный волокнистый каркас между фиброзным кольцом по периферии и связанными сверху и снизу единой системой волокон гиалиновыми пластинками. В пластинках наружных слоев фиброзного кольца выявлены чередующиеся различно ориентированные волокна, имеющие разную плотность: рыхло упакованные чередуются с плотно упакованными. В плотных слоях волокна расщепляются и переходят в рыхло упакованные слои, таким образом создается единая система волокон. Рыхлые прослойки заполнены тканевой жидкостью и, являясь упругой амортизирующей тканью между плотными слоями, обеспечивают упругость фиброзного кольца. Рыхловолокнистая часть фиброзного кольца представлена тонкими неориентированными коллагеновыми и эластическими волокнами и основным веществом, состоящим преимущественно из хондроитин-4-6-сульфата и гиалуроновой кислоты.
Высота дисков и позвоночника в течение суток непостоянна. После ночного отдыха высота их увеличивается, а к концу дня — уменьшается. Суточное колебание длины позвоночника достигает 2 см. Деформация межпозвоночных дисков различна при сжатии и растяжении. Если при сжатии диски уплощаются на 1-2 мм, то при растяжении высота их увеличивается на 3-5 мм.
В норме существует физиологическое выпячивание диска, которое заключается в том. что наружный край фиброзного кольца под действием осевой нагрузки выступает за линию, соединяющую края соседних позвонков. Это выпячивание заднего края диска в сторону позвоночного канала хорошо определяется на миелограммах, выстояние. как правило, не превышает 3 мм. Физиологическое выпячивание диска усиливается при разгибании позвоночника, исчезает или уменьшается – при сгибании.
Патологическая протрузия межпозвонкового диска отличается от физиологической тем, что распространенное или локальное выпячивание фиброзного кольца приводит к сужению позвоночного канала и не уменьшается при движениях позвоночника. Перейдем к рассмотрению патологии межпозвонкового диска.
Источник
Шейный отдел позвоночника.
- Физиологический лордоз шейного отдела позвоночника
- Отсутствие кифотической деформации
- Отсутствие смещений тел позвонков
Нормальное положение зуба С2 позвонка:
Антано-дентальное расстояние: сагиттальный срез приблизительно 0,1-0,3 см (до 0,5 см у детей). На фронтальном срезе зуб расположен центрально.
Кранио-вертебральный угол — угол сформированный внутренней поверхностью ската и задним контуром тела С2 позвонка. Нормальный диапазон считается от 150 градусов при сгибании и до 180 градусов при разгибании, компрессия возникает при угле менее 150 градусов.
Линия Чемберлена — линия, соединяющая твердое небо с задним краем большого затылочного отверстия/: верхушка зуба С2 позвонка расположена на 0,1-0,5 см выше или ниже линии.
Позвоночный канал.
Ширина позвоночного канала:
На уровне С1 > 2,1 см; С2>2,0 см; С3>1,7 см, С4-С7 = 1,4 см. О стенозе говорят, когда ширина 1,0 см и меньше.
Межпозвонковые диски: высота дисков С2<С3<С4<С5<С6>С7
Сагиттальные стенозы позвоночного канала (измерения на уровне межпозвонковых дисков):
Для шейного отдела позвоночника относительный стеноз на сагиттальных снимках менее 1,0 см, а абсолютный – менее 0,7 см.
Грудной отдел позвоночника.
Физиологический грудной кифоз грудного отдела позвоночника. Индекс кифоза норма 0,09-0,11 (отношение между А /В, где А — расстояние между линией В и передним контуром наиболее отдаленного позвонка; В – линия от верхнее-переднего угла тела Th2 позвонка до нижнее-переднего угла тела Th12 позвонка).
Угол между линиями, параллельными замыкательным пластинкам Th3—Th11 позвонков = 25 градусов.
Позвоночный канал.
Ширина позвоночного канала:
Аксиальный срез: поперечный размер на уровне ножек дуг позвонков > 2,0- 2,1 см.
Сагиттальный срез: на уровне Th1-Th11 =1,3-1,4 см; Th12 = 1,5 см.
Межпозвонковые диски: наименьшая на уровне Th1, Th6—Th11 и составляет около 0,4-0,5 см, наибольшая на уровне Th11/Th12.
Поясничное-крестцовый отдел позвоночника..
- Физиологический поясничный лордоз сохранен
- Перпендикуляр от центра L3 должен пересечь мыс крестца
- Пояснично-крестцовый угол = 26-57 гр.
- Отсутствие искривлений
- Отсутствие смещений тел позвонков
Позвоночный канал.
Ширина позвоночного канала:
Аксиальный срез, поперечный размер на уровне ножек дуг позвонков L1-L4:>2,0-2,1 см; L5 > 2,4 см.
Сагиттальный срез: 1,6-1,8 см; упрощенная формула не менее 1,5 см. от 1,1-1,5 см – относительный стеноз, менее чем 1,0 см – абсолютный стеноз
Соотношение Джонсона-Томсона = АхВ / СхD
А – ширина позвоночного канала
B – сагиттальный размер позвоночного канала
C – ширина тела позвонка
D – сагиттальный размер тела позвонка.
Между 0,5 и 0,22 = норма. Стеноз при соотношении меньшей 0,22.
Межпозвонковые диски
Высота 0,8-1,2 см, увеличивается от L1 до L4—L5
Обычно снижается L5/S1 но может быть равна или больше вышележащего.
Нормальная характеристика МР-сигнала слегка повышенная на Т2-ВИ, но не гиперинтенсивнее относительно других дисков.
Суставы.
Форма — суставные щели сходятся симметрично кзади.
Контуры: ровные и четкие, толщина кортикального слоя равномерная, отсутствие краевых остеофитов
Суставная щель: ширина, отсутствие ограниченных сужений и расширений, отсутствие срастания (анкилоза), отсутствие скопления жидкости, отсутствие в пределах сустава воздуха, обызвествлений, отсутствие краевых остеофитов, нормальная ширина суставных хрящей.
Субхондральные структуры: МР-сигнал костного мозга однородный, соответствует жиру, отсутствие краевых эрозий, отсутствие повышения МР-сигнала на Т2-взвешенных изображениях, понижения на Т1-ВИ.
Источник
Общая высота дисков позвоночного столба в среднем равна 1/4 длины позвоночника (В. Н. Тонкое, 1962). Наибольшую высоту имеют диски поясничного отдела; на уровне Th12 — L2 они составляют пример 1/4, а в зоне L2 — L5— 1/3 высоты тела.
При интерпретации рентгенограмм позвоночника исключительное внимание следует уделять оценке сравнительной высоты межпозвонковых дисков, так как ее колебания во многих случаях могут служить ключом к установлению общего диагноза заболевания. Само собой разумеется, что суждение об истинной высоте диска можно высказывать только при качественном, без проекционных искажений, выполнении рентгенограмм по оптимальной методике.
И. Л. Клионер (1962), ссылаясь на анатомические исследования Fick (1904), отмечает, что увеличение высоты дисков в дистальном направлении необязательно. Так, по Fick, в позвоночнике наименьшую высоту имеет диск Th4-5 его высота меньше, чем выше и ниже расположенных дисков Th3-4 и Th5-6. Подобные соотношения он наблюдал и между высотой диска Тh10—11 и его соседними дисками Th9-10 и Th11-12.
Данные Fick о высоте дисков мы имели возможность уточнить на рентгенограммах, выполненных в задней и боковых проекциях (фокусное расстояние 110-120 мм), у детей и у взрослых, в положении лежа, сидя и стоя, а также в положении латерографии с оптимальным ходом рентгеновских лучей, когда на рентгенограммах в двух проекциях позвонки представлялись только в виде одноконтурных прямоугольников. Измерение высоты межпозвонковых дисков в таких условиях подтверждает закономерность постепенного ее нарастания в дистальном направлении. Поэтому к данным И. Л. Клионера и Fick следует отнестись критически по той простой причине, что на анатомических препаратах нельзя так точно измерить высоту дисков, как это можно сделать на совершенных рентгенограммах позвоночника.
Основную массу диска в периферической части составляет фиброзное эластическое кольцо, являющееся главным и прочным связующим звеном в двигательном сегменте. Центральную зону диска занимает пульпозное ядро (его диаметр 10—25 мм). Ряд исследователей (Т. П. Виноградова, 1963; А. И. Осна, 1965; З. Л. Бродская, 1969; Jirout, 1964, и др). считают, что ядро залегает в своего рода суставной полости. Пульпозное ядро очень упруго, гидравлически несжимаемо и играет роль шарового сочленения. Это своеобразная подвижная опора, служащая осью движений (сгибание, разгибание, наклоны вбок и ротация позвонков).
Межпозвонковый диск богат водой. В пульпе при рождении содержится 88% воды, в двухлетнем возрасте—80%, а к 68 годам—69% (Р. И. Паймре, 1973). Фиброзное кольцо дегидратирует медленнее и к 80 годам имеет около 68% воды (А. Войня, 1964). С возрастом происходит постепенная трансформация структуры пульпозного ядра в сторону частичного приближения к структуре фиброзного кольца, а в более пожилом возрасте — к структуре гиалинового хряща (Т. П. Виноградова, 1963).
У ребенка диск богат сосудами, проникающими в него из тела позвонка через решетчатую пластинку. В юношеском возрасте в результате облитерации число сосудов уменьшается.
У взрослого диск не имеет сосудов и его питание обеспечивается путем диффузии через основное неклеточное вещество гиалиновых пластинок.
Этот тип питания является фактором, предрасполагающим к дегенеративно-дистрофическим изменениям (Ubermuth, 1930; А. Войня, 1964). Одновременно с исчезновением сосудов и оссификацией апофизарного кольца эластичность диска уменьшается и начинаются процессы инволюции в его составных элементах — пульпозном ядре, фиброзном кольце и гиалиновых пластинках.
— Читать далее «Связочный аппарат позвоночника. Биомеханика позвоночника»
Оглавление темы «Рентгенография позвоночника»:
1. Контуры позвоночника на рентгенограмме. Физиологические изгибы позвоночника
2. Оценка межпозвоночных дисков. Нормальная высота межпозвоночных дисков
3. Связочный аппарат позвоночника. Биомеханика позвоночника
4. Дегенеративно-дистрофические изменения позвоночника. Рентгенография поясничного отдела позвоночника
5. Техника рентгенографии позвоночника. Укладка пациента для рентгенографии позвоночника
6. Боковая рентгенография позвоночника. Укладка для боковой рентгенографии позвоночника
7. Латерограммы позвоночника. Значение латерографии позвоночника
8. Функциональное рентгенологическое позвоночника. Функциональное исследование поясничного отдела позвоночника
9. Функциональная латерография позвоночника. Латерография в задней проекции
10. Методы миелографии и дискографии. Двигательный сегмент позвоночника
Источник